Recommended Practices - SAE Mobilus

Items (6,864)
The following information covers accessory drive belt testing methods and includes test configurations, pulley diameters, power loads, and guidance for interpreting test data. Belt construction definitions are also documented. This information has been prepared from existing literature, including standards and data supplied by producers and users of V-ribbed belts.
Belt Drive (Automotive) Systems Committee
This SAE Aerospace Recommended Practice (ARP) provides design guidance and a method for testing thermal performance of airplane in-flight food storage carts. It is noted that thermal performance criteria is not part of AS8056.
S-9B Cabin Interiors and Furnishings Committee
This SAE Aerospace Recommended Practice (ARP) is an application guide for fixed and variable displacement hydraulic motors. It provides details of the characteristics of fixed and variable displacement hydraulic motors, architectures, circuit designs, controls, and typical applications. The applications include airborne and defense vehicles with emphasis on high performance applications.
A-6C4 Power Sources Committee
This SAE Recommended Practice describes a laboratory test procedure and requirements for evaluating the characteristics of heavy-truck steering control systems under simulated driver impact conditions, as well as driver entry/egress conditions. The test procedure employs a torso-shaped body block that is impacted against the steering wheel.
Truck Crashworthiness Committee
This SAE Recommended Practice provides the design criteria for static elastomeric O-ring seals used specifically in engine and engine control systems. It provides radial compression groove dimensions for aerospace metric O-ring sizes specified in MA2010. The conditions considered to formulate the design criteria are also described, e.g., seal stretch, cross-section reduction, seal squeeze, and swell.
A-6C2 Seals Committee
This SAE Recommended Practice provides a uniform procedure and performance requirements for evaluating fastening systems for normal highway use on aftermarket passenger cars and light trucks (except dual wheels, which are covered by SAE J1965) and multipurpose passenger vehicles. The fastening system includes the wheel, wheel bolts, and wheel nuts, as well as vehicle mating surface. The coefficients of friction for steel and aluminum mating surfaces are provided based on information available. Many factors must be considered in design and validation of wheel attachments for each specific vehicle. Where the procedure is used for original equipment applications the vehicle manufacturers specifications supersede those noted.
Wheel Standards Committee
The performance requirements have been established for external automatic slack adjusters when tested to SAE J1462.
Truck and Bus Foundation Brake Committee
This test procedure is for qualification testing of powered gas/brake control systems to assure compliance with the recommended practices for these assistive devices. A powered gas/brake control system which passes all of the tests shall be considered to be in compliance with the recommended practices. The control shall pass all tests denoted by a “shall” in the recommended practice or the recommended test procedure (RTP). All the results of all tests and requirements denoted by a “should” shall be noted, but failure to comply will not constitute failure to pass the test.
Adaptive Devices Standards Committee
This SAE Aerospace Recommended Practice (ARP) provides recommendations for the function, design, construction, and testing of an on-aircraft Brake Temperature Monitoring System (BTMS), sometimes referred to as a Brake Temperature Indication System (BTIS). NOTE: This ARP does not address: Cockpit ergonomics and Aircraft operating procedures. Various handheld methods of temperature sensing or readouts, as these are not associated with transport aircraft during normal operation. Temperature sensitive paints as a means to indicate exceedance of a landing gear axle temperature threshold due to brake temperature.
A-5A Wheels, Brakes and Skid Controls Committee
This SAE Recommended Practice establishes uniform test procedures for friction based parking brake components used in conjunction with hydraulic service braked vehicles with a gross vehicle weight rating greater than 4500 kg (10 000 lb). The components covered in this document are the primary actuation and the foundation park brake. Various peripheral devices such as application dashboard switches or indicators are not included. These test procedures include the following: a Brake Related Tests 1 Brake Functional Performance 2 Brake Dynamic Torque Performance 3 Brake Corrosion Resistance 4 Brake Endurance with Torque 5 Brake Endurance without Torque 6 Vibration Resistance 7 Brake Ultimate Static Load 8 Brake Lining Wear Adjuster Function b Actuation Related Tests 1 Mechanical Actuator Functional Performance 2 Mechanical Actuator Endurance 3 Mechanical Actuator Quick Release 4 Mechanical Actuator Ultimate Load 5 Spring Apply Actuator Functional Performance 6 Spring Apply Actuator
Truck and Bus Hydraulic Brake Committee
This SAE Recommended Practice establishes the test procedure, environment, and instrumentation to be used for measuring the exterior exhaust sound level for passenger cars, multipurpose vehicles, and light trucks under stationary conditions providing a continuous measure of exhaust system sound level over a range of engine speeds. This document applies only to road vehicles equipped with an internal combustion engine. The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle. It is within the scope of this document to measure the stationary A-weighted sound pressure level during: Measurements at the manufacturing stage Measurements at official testing stations Measurements at roadside testing It does neither specify a method to check the exhaust sound pressure level when the engine is operated at realistic load nor a method to check the exhaust sound pressure levels against a
Light Vehicle Exterior Sound Level Standards Committee
SAE J1273 provides guidelines for selection, routing, fabrication, installation, replacement, maintenance, and storage of hose and hose assemblies for hydraulic fluid-power systems. Many of these SAE Recommended Practices also may be suitable for other hoses and systems.
Hydraulic Hose and Hose Fittings Committee
The purpose of this SAE Recommended Practice is to establish a uniform laboratory procedure for securing and reporting the friction and wear characteristics of brake linings. The performance data obtained can be used for in-plant quality control by brake lining manufacturers and for the quality assessment of incoming shipments by the purchasers of brake linings.
Brake Linings Standards Committee
This SAE Aerospace Recommended Practice (ARP) provides a standard reference list of code designations to be applied to the various sleeves used on hose assemblies when preparing related "AS" specifications and part standards.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
The SAE Recommended Practice is intended for use in measuring the radius of curvature (ROC) of spherical convex mirrors.
Driver Vision Standards Committee
This document covers cable, shielded and jacketed, intended for use at a nominal system voltage up to 1000 V (AC rms or DC). It is intended for use in surface vehicle electrical systems.
Cable Standards Committee
This document specifies the minimum recommendations for Blind Spot Monitoring System (BSMS) operational characteristics and elements of the user interface. A visual BSMS indicator is recommended. BSMS detects and conveys to the driver via a visual indicator the presence of a target (e.g., a vehicle), adjacent to the subject vehicle in the “traditional” Adjacent Blind Spot Zone (ABSZ). The BSMS is not intended to replace the need for interior and exterior rear-view mirrors or to reduce mirror size. BSMS is only intended as a supplement to these mirrors and will not take any automatic vehicle control action to prevent possible collisions. While the BSMS will assist drivers in detecting the presence of vehicles in their ABSZ, the absence of a visual indicator will not guarantee that the driver can safely make a lane change maneuver (e.g., vehicles may be approaching rapidly outside the ABSZ area). This document applies to original equipment and aftermarket BSMS systems for passenger
Advanced Driver Assistance Systems (ADAS) Committee
Adaptive cruise control (ACC) is an enhancement of conventional cruise control systems that allows the ACC-equipped vehicle to follow a forward vehicle at a pre-selected time gap, up to a driver selected speed, by controlling the engine, power train, and/or service brakes. This SAE Standard focuses on specifying the minimum requirements for ACC system operating characteristics and elements of the user interface. This document applies to original equipment and aftermarket ACC systems for passenger vehicles (including motorcycles). This document does not apply to heavy vehicles (GVWR > 10,000 lbs. or 4,536 kg). Furthermore, this document does not address other variations on ACC, such as “stop & go” ACC, that can bring the equipped vehicle to a stop and reaccelerate. Future revisions of this document should consider enhanced versions of ACC, as well as the integration of ACC with Forward Vehicle Collision Warning Systems (FVCWS).
Advanced Driver Assistance Systems (ADAS) Committee
Applies to hydraulic cylinders which are components of off-road self-propelled work machines defined in SAE J1116.
CTTC C1, Hydraulic Systems
This SAE Aerospace Recommended Practice (ARP) provides a framework for establishing methods and stakeholder responsibilities to ensure that seats with integrated electronic components (e.g., actuation system, reading light, inflatable restraint, inflight entertainment equipment, etc.) meet the seat TSO minimum performance standard. These agreements will allow seat suppliers to build and ship TSO-approved seats with integrated electronic components. The document presents the roles and accountabilities of the electronics manufacturer (EM), the seat supplier, and the TC/ATC/STC applicant/holder in the context of AC 21-49 Section 7.b (“Type Certification Using TSO-Approved Seat with Electronic Components Defined in TSO Design”). This document applies to all FAA seat TSOs C39( ), C127( ), etc. The document defines the roles and responsibilities of each party involved in the procurement of electronics, their integration on a TSO-approved seat, and the seat’s installation on an aircraft
Aircraft SEAT Committee
This document covers the requirements for SAE implementations based on ISO 17987:2016. Requirements stated in this document will provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This will assure full serial data communication among all connected devices regardless of supplier. The goal of SAE J2602-1 is to improve the interoperability and interchangeability of LIN devices within a network by adding additional requirements that are not present in ISO 17987:2016 (e.g., fault tolerant operation, network topology, etc.). The intended audience includes, but is not limited to, ECU suppliers, LIN controller suppliers, LIN transceiver suppliers, component release engineers, and vehicle system engineers. The term “master” has been replaced by “commander” and term “slave” with “responder” in the following sections.
Vehicle Architecture For Data Communications Standards
This document applies to webbing used on occupant restraint systems in service on 14 CFR/CS part 23, part 25, part 27, and part 29 aircraft applications. The guidelines presented within this document are intended to be supplemental to the requirements supplied by the OEM in the CMM, ICA, or like document. In cases of conflict between this ARP and the OEM’s requirements, the requirements of the OEM shall be followed. The objective of this document is to establish practical guidelines to help operators in the determining if restraint webbing has reached the end of its service life. The recommendations contained herein are based on test data from in service restraint systems and the continued airworthiness guidelines recommended by restraint system OEMs.
Aircraft SEAT Committee
This SAE Aerospace Recommended Practice (ARP) identifies and defines a method of measuring those factors affecting installed power available for helicopter powerplants. These factors are installation losses, accessory power extraction, and operational effects. Accurate determination of these factors is vital in the calculation of helicopter performance as described in the RFM. It is intended that the methods presented herein prescribe and define each factor as well as an approach to measuring said factor. Only basic installations of turboshaft engines in helicopters are considered. Although the methods described may apply in principle to other configurations that lead to more complex installation losses, such as an inlet particle separator, inlet barrier filter (with or without a bypass system), or infrared suppressor, specialized or individual techniques may be required in these cases for the determination and definition of engine installation losses. Some rotorcraft may use an
S-12 Powered Lift Propulsion Committee
This SAE Recommended Practice covers the safety alert symbol intended for use on construction and industrial equipment as defined in SAE J1116 and on agricultural tractors and machinery as defined in ASABE S390.
HFTC2, Machine Displays and Symbols
This document covers the requirements for SAE implementations based on ISO 17987. Requirements stated in this document will provide a minimum standard level of performance to which all compatible systems, design and development tools, software, ECUs, and media shall be designed. This will assure consistent and unambiguous serial data communication among all connected devices regardless of supplier. This document may be referenced by any vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. The intended audience includes, but is not limited to, ECU suppliers, LIN controller suppliers, LIN transceiver suppliers, component release engineers, and vehicle system engineers. The term “master” has been replaced by “commander” and term “slave” with “responder” in the following sections.
Vehicle Architecture For Data Communications Standards
This document covers the tests to be performed on all SAE J2602-1 (2021 revision) devices. Tests described in this document will ensure a minimum standard level of performance to which all compatible electronic control units (ECUs) and media shall be designed. This will assure full serial data communication among all connected devices regardless of supplier. The goal of SAE J2602-2 is to improve the interoperability and interchangeability of LIN devices within a network by verifying the devices pass a minimum set of tests. To allow for easy cross-reference, this document is arranged such that the conformance test for a given section in SAE J2602-1 (2021 revision) is in the same section in SAE J2602-2. This document is to be referenced by the particular vehicle original equipment manufacturer (OEM) component technical specification that describes any given ECU in which the LIN data link controller and physical layer interface is located. Primarily, the performance of the physical layer
Vehicle Architecture For Data Communications Standards
The data in this document is, at this stage, primarily concerned with the interface of pallet/container loaders and lower-deck compartments of standard and wide-body aircraft although the principles illustrated may be applied to the main-decks of narrow and wide-body aircraft. NOTE: For the purpose of this document, in accordance with Part 3 of the Directives for the technical work of ISO and with accepted IATA practice, minimum essential criteria defined by the word "shall" are absolute requirements. Recommended criteria identified by the word "should", while considered important, are not mandatory.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Recommended Practice covers the requirements for ethernet physical layer (PHY) qualification. Requirements stated in this document provide a minimum standard level of performance for the PHY in the IC to which all compatible ethernet communications PHY shall be designed. When the communications chipset is an ethernet switch with an integrated automotive PHY (xBASE-T1), then the testing shall include performance for all switch PHY ports as well as each controller interface. No other features in the IC are tested or qualified as part of this SAE Recommended Practice. This assures robust serial data communication among all connected devices regardless of supplier. The goal of SAE J2962-3 is to commonize approval processes of ethernet PHYs across OEMs. The intended audience includes, but is not limited to, ethernet PHY suppliers, component release engineers, and vehicle system engineers.
Vehicle Architecture For Data Communications Standards
This SAE Recommended Practice provides performance, sampling, certifying requirements, test procedures, and marking requirements for aftermarket wheels intended for normal highway use on passenger cars, light trucks, and multipurpose passenger vehicles. For aftermarket wheels on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, refer to SAE J1204. These performance requirements apply only to wheels made of materials included in Tables 1 and 2. For wheels using composite material, refer to SAE J3204. New nomenclature and terms are added to clarify wheel constructions typically not used in OEM applications. The testing procedures and requirements are based on SAE standards listed in the references.
Wheel Standards Committee
SAE J4001 provides instruction for evaluating levels of compliance to SAE J4000. Component text (Sections 4 to 9) from SAE J4000 is included for convenience during the evaluation process. Applicable definitions and references are contained in SAE J4000. SAE J4000 tests lean implementation within a manufacturing organization and includes those areas of direct overlap with the organization’s suppliers and customers. If applied to each consecutive organizational link, an enterprise level evaluation can be made. SAE J4001 relates the following approximate topic percentages to the implementation process as a whole: SAE J4001 is to be applied on a specific component basis. Each of the 52 components tests part of, one, or multiples of the specific requirements of lean implementation. Implementation throughout an organization may be measured by evaluating all of the components. The level of compliance for each component relative to best practice may be used as a reference by an organization to
Automotive Quality and Process Improvement Committee
Items per page:
1 – 50 of 6864