Connecting Rod Durability and Big-End Bore Distortion Study

2020-01-0184

04/14/2020

Event
WCX SAE World Congress Experience
Authors Abstract
Content
The prediction of the connecting rod behaviour is one of the most important aspects of the engine design to estimate the engine life and its NVH behaviour. Connecting rod is usually simulated as a stand-alone component replacing the connected members with boundary conditions. These kinds of simulation usually underestimate the life of the connecting rod and overestimate the crankpin distortion. This unreal behaviour of simulation can result in over design of the crankshaft and wrong crankpin bearing selection, which can result in a noisy engine. The current Finite Element Analysis (FEA) is modelled by considering crankshaft, bearings, 3D bolts and crankcase substructure along with the connecting rod to predict the fatigue life and bearing distortion. A multi-body dynamics (MBD) simulation of the Cranktrain has been carried out to predict the forces and accelerations on the connecting rod by including the combustion force with a constant crankshaft speed for different conditions. The extracted loads from MBD simulation at different conditions are imported into FEA model, to predict stresses at maximum combustion and maximum inertia stages. Journal bearing crushing and bolt preload are the initial steps to the simulation. The predicted stresses from FEA has been considered as input for the fatigue life prediction following the engine endurance cycle including the residual stresses. The big end distortion has been Fourier transformed to extract the bounds which give insight into clearance limit in the operating conditions. Fatigue life prediction and the big end distortion from the regular stand-alone connecting rod model and FEA assembly method has been compared and discussed. The wear pattern on the big end bearing in testing emulated the contact pressure pattern on the assembly method, which emphasises the importance of modelling the connecting rod durability as an assembly model.
Meta TagsDetails
DOI
https://doi.org/10.4271/2020-01-0184
Pages
13
Citation
Thekke Kolayath, N., T, S., and Giles, R., "Connecting Rod Durability and Big-End Bore Distortion Study," SAE Technical Paper 2020-01-0184, 2020, https://doi.org/10.4271/2020-01-0184.
Additional Details
Publisher
Published
Apr 14, 2020
Product Code
2020-01-0184
Content Type
Technical Paper
Language
English