Modern Battery Systems – the eMobility Enabler Virtual Pre-Conference Certification
C2017
08/07/2020
- Content
eMobility presents enormous challenges to engineers who have been engaged primarily in non-electrical sectors of vehicle engineering. Yet, eMobility also presents exciting opportunities to those who are ready to understand how high voltage batteries contribute to the success of eMobility. This seminar will bring together all the materials in an easy to follow format geared to a wide range of participants from engineers to technicians to sales staff to executives.
To grasp the opportunities, we need to understand a small number of topics that describe how a battery system contributes to eMobility applications. However, that is only one aspect of how to develop a successful product. As the history of automotive engineering has demonstrated in the marketplace time after time, if the customer is not satisfied with the product, success will be elusive. This seminar will take us, in a team-based problem-solving session, through what we think the customer needs and wants are. As importantly, we’ll look at who the customers are and how that influences their wants and needs.
Once these requirements are established, we can cover how cells behave, what materials are used in them and how they need to be handled. All of these are then important factors in cell design and battery design to support the expected levels of performance in energy and power. A lithium ion battery’s sensitivity to its environment and how to manage that sensitivity will also be explored. We will also look at the need to keep all cells performing together rather than as individuals.
Another team-based exercise will examine one of the key concerns for consumers – range anxiety. We will explore how range can be estimated and what sensitivities drive this calculation. If range anxiety is a key issue still today, when will it not be so. We’ll look at what can be expected in battery performance beyond today in areas such as solid state, lithium sulfur and others.
As important as skillful battery design is, it is just as important to verify that the battery will indeed, perform as promised in the specifications. Verification comes through a through a thorough testing program structured as part of the APQP (Advanced Product Quality Planning) disciplines. We will look at what is contained in such a test program and the regulations and standards that drive the tests. We’ll look at what makes up the safety and abuse test program of lithium ion batteries. We will look at media reports of electric vehicle fires in context of expectations of lithium ion batteries as a part of electric vehicle safety.
The hazards that can be expected when working with high voltage lithium ion batteries will be examined and related to the management of the associated risks. The hazards will be related to the sensitivities of lithium ion cells and what can cause these hazards in a team-based session. We will look at common practices to measure and manage the risks in the various environments such as manufacturing, assembly, installation, R&D, testing fault detection, repair, disassembly and undefined states.
No battery will be commercially successful if it is not cost competitive. On this subject we will examine product cost and its constituents such as material costs, overhead costs, labour costs and legacy costs.
The three-day session will include short quizzes at key points as well as a post seminar short question set. In addition, early registrants are invited to submit battery technology related problems which will be used to pose a team-based challenge to be solved on the afternoon of the last day of the seminar.
By attending this seminar, you will be able to:- Identify the handling risks of the battery system
- Respect the risks and work with them
- Develop a safety program to manage the risks
- Capture customer wants and expectations of the battery system
- Identify factors that drive power and energy requirements
- Determine test program structure
- Compare and contrast the newest relevant battery technologies
- Calculate estimates of electric range and quantify the assumptions
- Critically assess media claims of new battery discoveries