Planetary Polarization Nephelometer
TBMG-18949
01/01/2014
- Content
Aerosols in planetary atmospheres have a significant impact on the energy balance of the planets, yet are often poorly characterized. An in situ instrument was developed that would provide more diagnostic information on the nature of aerosols it encountered if deployed on a planetary descent probe. Previous probe instruments only measured intensity phase functions, but much particle ambiguity remains with only this information. Adding the polarization phase function greatly reduces particle characteristic ambiguities, but also adds more challenges in designing a measurement approach. Laboratory instrumentation to measure intensity and polarization phase functions have existed since the early 1970s, but these instruments employed quarter-wave plates and Pockels cells to modulate the illuminating beam and the scattered light to isolate the intensity and polarization phase functions. Both of these components are unstable except under tightly controlled thermal conditions. This solution avoids the use of thermally sensitive components such as quarter- wave plates or Pockels cells, and avoids requiring the detectors to be placed around the sensing volume.
- Citation
- "Planetary Polarization Nephelometer," Mobility Engineering, January 1, 2014.