ONR Short Pulse Research, Evaluation and non-SWaP Demonstration for C-sUAV Study
19AERP06_09
06/01/2019
- Content
-
Research project is designed to map small unmanned aerial vehicle (sUAV) effects space, empirically and by simulation, as a function of high power microwave (HPM) waveform to develop effective countermeasures.
Office of Naval Research, Arlington, Virginia
The OSPRES (ONR Short Pulse Research, Evaluation and non-SWaP) program performed fundamental work in the areas of Silicon (Si) and Gallium Nitride (GaN) based photoconductive switch development, measurement of HPM waveform dependent effects on small unmanned aerial vehicle (sUAV), adaptive design of experiments, noise injection, RF coupling to sUAV's, minimally dispersive wave theory, and positive feedback non-linear transmission line (NLTL) development.
The photoconductive solid state switch (PCSS) subgroup worked to develop a fundamental understanding of the limitations of Silicon and Gallium Nitride based photoconductive switches and their application to pulsed power. With an estimated 2 megawatts (MW) peak power generation (benchtop equivalent), the Si-PCSS subgroup has succeeded in achieving one-third of the peak power required for an individual element in the envisioned phased array required to meet mission needs.
- Pages
- 2
- Citation
- "ONR Short Pulse Research, Evaluation and non-SWaP Demonstration for C-sUAV Study," Mobility Engineering, June 1, 2019.