Increasing the Life of a Xenon-Ion Spacecraft Thruster
TBMG-2439
11/01/2007
- Content
A short document summarizes the redesign of a xenon-ion spacecraft thruster to increase its operational lifetime beyond a limit heretofore imposed by nonuniform ion-impact erosion of an accelerator electrode grid. A peak in the ion current density on the centerline of the thruster causes increased erosion in the center of the grid. The ion-current density in the NSTAR thruster that was the subject of this investigation was characterized by peak-to-average ratio of 2:1 and a peak-to-edge ratio of greater than 10:1. The redesign was directed toward distributing the same beam current more evenly over the entire grid and involved several modifications of the magnetic-field topography in the thruster to obtain more nearly uniform ionization. The net result of the redesign was to reduce the peak ion current density by nearly a factor of two, thereby halving the peak erosion rate and doubling the life of the thruster. (Note: NSTAR stands for NASA SEP Technology Application Readiness; SEP stands for solar electric propulsion.)
- Citation
- "Increasing the Life of a Xenon-Ion Spacecraft Thruster," Mobility Engineering, November 1, 2007.